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Overview

▶ RSA (Rivest–Shamir–Adleman) is one of the oldest and most
widely used public-key cryptosystems.

▶ Public-key cryptography involves individuals generating a
private key (kept to yourself) and a public key, which they
share with others.

▶ Messages can be encrypted using someone’s public key, and
only the recipient possessing the corresponding private key
can decrypt them.



Modular Arithmetic

▶ Modular arithmetic is a system for working with integers
under a specified modulus.

▶ The expression x ≡ a (mod N) means that x is congruent to
a modulo N. In other words, x and a yield the same
remainder when divided by N.

▶ For example, 15 ≡ −9 (mod 3) since both yield a remainder
of 0 when divided by 3.

▶ Clock arithmetic is a specific case of modular arithmetic with
a modulus of 12. For instance, if it is 9 : 00 now, then in 6
hours, the time will be 15 : 00, which is congruent to 3 : 00
modulo 12.



Euler’s Totient Function

▶ Euler’s totient function, denoted ϕ(n), counts the number of
positive integers m such that 1 ≤ m < n and gcd(m, n) = 1.

▶ Two numbers are said to be coprime if their greatest common
divisor (gcd) is 1, indicating they share no common factors
other than 1. Notably, primes are coprime to all preceding
positive integers, so ϕ(p) = p − 1 for prime p.

▶ For example, ϕ(15) = 8 since {1, 2, 4, 7, 8, 11, 13, 14} are
coprime to 15, leaving out {3, 5, 6, 9, 10, 12}.

▶ It is a known fact that ϕ(nm) = ϕ(n)ϕ(m) when n and m are
coprime.



Euler’s Theorem

Let n be a positive integer, and let a be an integer coprime to n.
Then, according to Euler’s theorem:

aϕ(n) ≡ 1 (mod n)

For example, for any number a coprime to 15, since ϕ(15) = 8, we
have a8 ≡ 1 (mod 10).



Modular Inverses

▶ The modular inverse of a modulo m is the integer x such that
ax ≡ 1 (mod m). If a and m are coprime, then there exists an
integer x that serves as the modular inverse of a.

▶ We can use the Extended Euclidean algorithm to compute
modular inverses, which is an algorithm relying on the
computationally easy multiplication.



Factoring Problem

▶ The security of RSA encryption hinges on the challenge of
factoring the product of two large prime numbers.

▶ Today, known algorithms would require an infeasible amount
of time, extending beyond the age of the universe, to factorize
sufficiently large primes, ensuring our security.

▶ The practicality of RSA encryption is rooted in the
computational simplicity of multiplying numbers, a task easily
handled by computers.

▶ For instance, computing 31 · 37 = 1147 is straightforward, but
finding the factors of 1147 without prior knowledge of its
construction is significantly more time-consuming.



RSA Algorithm
The Setup

1. The receiver first selects two large prime numbers, p and q.
Their product, n = pq, forms part of the public key.

2. Next, the receiver computes Euler’s totient function:
ϕ(n) = ϕ(pq) = ϕ(p)ϕ(q) = (p − 1)(q − 1). Then, they
choose a number e coprime to ϕ(n). This e constitutes the
rest of the public key.

3. Finally, the receiver calculates the modular inverse d of e
modulo ϕ(n). This d serves as the private key. Computing d
is computationally challenging without knowing n = pq, as it
requires the knowledge of ϕ(n) = (p − 1)(q − 1).



RSA Algorithm
Transmitting Messages

The receiver broadcasts their public key (n, e) and keeps their
private key d confidential.

1. The sender converts their message into a number m, typically
using a system like ASCII encoding. It’s important that m < n
to avoid losing the message in the encryption process when
taking modulo n.

2. Next, the sender computes the encrypted ciphertext: c ≡ me

(mod n). This ciphertext, along with the public key, is the
only information accessible to a potential attacker.

3. Upon receiving the ciphertext, the receiver decrypts it to
retrieve the original message: m ≡ cd (mod n).

Step 3 relies on Euler’s theorem, which states that mϕ(n) ≡ 1
(mod n), and the choice of d such that de ≡ 1 (mod ϕ(n)). This
ensures the existence of an integer k such that de = kϕ(n) + 1.
Consequently,

mde ≡ mkϕ(n)+1 ≡ mkϕ(n)·m ≡ (mϕ(n))k ·m ≡ 1k ·m ≡ m (mod n).



Example
The Setup

Let’s have the receiver select primes p = 13 and q = 17. In
practice, primes would be much larger to avoid falling victim to
brute force attacks.

1. n = pq = 13× 17 = 221, which is half of the public key.

2. ϕ(n) = (13− 1)(17− 1) = 192. The receiver chooses e = 5.

3. Then, the receiver calculates d = 77, since de ≡ 1
(mod ϕ(n)).

4. Finally, the receiver distributes their public key (221, 5).



Example
Message Transmission

Note that the public key is (221, 5).
Let’s say the sender wants to transmit the message ”DAVID”. We
can use an ASCII table to convert each character to its ASCII
number. So we have m = 6869766868. However, note that m > n,
which would cause our message to be lost if we try to send it all at
once. Therefore, we send our message piece by piece.

1. Starting with the letter ”D”, we have m = 68.

2. To encrypt the message m, the sender calculates
c ≡ me ≡ 685 ≡ 204 (mod 221). Thus c = 204 and it is sent
to the receiver. Any third-party attackers will also be able to
see this encrypted message.

3. The receiver, however, will be able to decrypt it with their
private key d = 77. cd = 20477 ≡ 68 (mod 221), thus getting
the message m = 68.

4. The receiver translates this to the letter ”D”.



Applications

▶ Online Banking

▶ Account logins

▶ Digital Signatures

▶ VPN Encryption

▶ Secure Shell (remote file access and transfer)

▶ Email encryption

▶ Web browser authentification

▶ Token-based logins



Vulnerabilities
▶ The strength of RSA is measured by the number of bits in n.

To prevent brute force attacks, most newly generated keys are
4096 bits long. A 512-bit RSA key can be cracked in a few
hours, and in 2010, a brute force attack on a 768-bit key was
successful.

▶ Computers can easily compute the greatest common divisor of
two numbers using the Euclidean algorithm. Thus, an
attacker can use this algorithm on two public keys. If their
greatest common divisor is not 1, then the attacker has found
a prime number dividing both keys, compromising both keys
and allowing the attacker to promptly find the private key.

▶ If p and q are close together such that me < n, the attacker
can determine the private key efficiently.

▶ Quantum computers can factor numbers exponentially faster
than current algorithms (Shor’s algorithm). However, as of
today, quantum computers are too small to factor numbers
greater than 16-bits.


